Version 1.0

Level 2 Certificate in Further Mathematics June 2012

Paper 2 8360/2

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

www.mymathscloud.com

Glossary for Mark Schemes

WWW.MYMathscloud.com These examinations are marked in such a way as to award positive achievement wherever possible. Thus, for these papers, marks are awarded under various categories.

- Μ Method marks are awarded for a correct method which could lead to a correct answer.
- Α Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
- В Marks awarded independent of method.
- **M** Dep A method mark dependent on a previous method mark being awarded.
- **B** Dep A mark that can only be awarded if a previous independent mark has been awarded.
- ft Follow through marks. Marks awarded following a mistake in an earlier step.
- SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
- Or equivalent. Accept answers that are equivalent. oe

eg, accept 0.5 as well as $\frac{1}{2}$

Paper 2 - Calculator

Paper	2 - Calculator		ics www.mymathsciou Comments
Q	Answer	Mark	Comments
1	Radius = $\sqrt{36}$ or 6	B1	Diameter = $2\sqrt{36}$ or 12
	2 (×) π (×) their radius	M1	π (×) their diameter
	12π or [37.68, 37.704]	A1	

	2	$15x^2 - 8x$	B2	B1 Only one term correct
--	---	--------------	----	--------------------------

3	8^2 or 4^2 or 64 or 16 or 80 or (-8^2) or (-4^2)	M1	
	$\sqrt{\text{their 8}^2 + \text{their 4}^2}$	M1 Dep	
	8.944() or $\sqrt{80}$	A1	oe eg $4\sqrt{5}$
			This mark is implied by 8.94
	8.94	B1 ft	ft From any value > 3sf seen or any value given as a surd that is rounded to 3sf

4(a)	Positive	B1	Do not allow if more than one answer selected
4(b)	Negative	B1	Do not allow if more than one answer selected
4(c)	One positive and one negative	B1	Do not allow if more than one answer selected
4(d)	0	B1	Do not allow if more than one answer selected
4(e)	<i>y</i> = -3	B1	Do not allow if more than one answer selected

Q	Answer	Mark	Comments Course
	1	Ī	
5(a)	Angle $ACP = x$ or angle PAC (base angles of) isosceles triangle (are equal)	M1	
	Angle $APC = 180 - 2x$	M1 Dep	BPC = 2x external angle of triangle
	angle sum of triangle (= 180°)		(= sum of interior opposite angles)
	and		
	angle $BPC = 2x$		
	angles on straight line (add to 180°)		
	Angle $ABC = 2x$ or angle BPC (base angles of) isosceles triangle (are equal)	A1	SC2 'Correct' response but has reason(s) missing or incorrect
5(b)	Angle $ACB = 2x$	M1	May be implied by working
	x + 2x + 2x = 180	M1	oe eg 1 $5x = 180$
			eg 2 90 - $\frac{1}{2}x = 2x$
	36	A1	

6(a)	$6x^2 - 15xy$	B2	B1 Only one correct term
6(b)	$9x^2 - 12xy + 6xy - 8y^2$	M1	ое
			Must have 4 terms with at least 3 correct
	$9x^2 - 12xy + 6xy - 8y^2$	A1	All 4 terms correct
	$9x^2 - 6xy - 8y^2$	A1 ft	ft From M1 A0
6(c)	3:2	B2 ft	ft Their (a) and their (b) with $y = 0$ substituted
			B1 ft Any equivalent unsimplified ratio eg $9x^2$: $6x^2$
			SC1 2:3

Q	Answer	Mark	Comments
~			
7(a)	$-8 \le m+n \le 7$	B2	Comments B1 – 8 or 7 in correct position
7(b)	$0 \le (m+n)^2 \le 64$	B2ft	If (a) is fully correct ft does not apply
			B1 For 0 or 64 in correct position
			If (a) is not fully correct apply ft
			Can only award B2ft if their (a) has one negative value and one positive value
			B1ft for one value in correct position
			Can award a maximum of B1 ft if in (a) both values have the same sign or one value is zero
8(a)	С	B1	Do not allow if more than one answer selected
8(b)	А	B1	Do not allow if more than one answer selected

		AQA Level 2 Certifica	ate in Further Mathematics - 8360/2- Jui Munnathscip
Q	Answer	Mark	Comments Contraction
9(a)	5t + 3 = 4wt + 8w	M1	
	5t - 4wt = 8w - 3	M1	Separation of terms in t from those not in t
	t(5-4w) = 8w - 3	M1	Factorisation of terms in t
	$t = \frac{8w - 3}{5 - 4w}$	A1 ft	oe eg $t = \frac{3-8w}{4w-5}$
			Must have <i>t</i> =
			Only ft if third M1 and one other M1 gained
9(b)	$\frac{8\times-\frac{1}{8}-3}{5-4\times-\frac{1}{8}}$	M1	Substitution of $w = -\frac{1}{8}$ in their $\frac{8w-3}{5-4w}$
	$5-4\times-\frac{1}{8}$		Their $\frac{8w-3}{5-4w}$ must be in terms of w
	Numerator = -4 or	A1 ft	ft Their $\frac{8w-3}{5-4w}$
	denominator = $5\frac{1}{2}$		This mark can only be gained for correct evaluation of their algebraic numerator or their algebraic denominator
	$-\frac{8}{11}$ or -0.72	A1 ft	ft Their $\frac{8w-3}{5-4w}$
			This mark can only be gained for correct evaluation of their algebraic numerator and their algebraic denominator
			Must be an exact value in simplest form
			SC2 -0.72 or -0.73 or a correct evaluation of their algebraic numerator or their algebraic denominator
Alt 9(b)	$5t+3=-\frac{4}{8}(t+2)$	M1	oe equation
	44t = -32	A1	oe eg $5.5t = -4$
	$-\frac{8}{11}$ or -0.72	A1 ft	ft from their $at = b$ if M1 A0
	11 11		Must be an exact value in simplest form
			SC2 -0.72 or -0.73

er 2 - Ju	ne 2012 - 8360/2 - AQA Level 2 Certificate	in Further Mathemat	ics how municipality of the second se
Q	Answer	Mark	Comments Clou
10	sin 28 chosen	B1	cos 62 chosen
	7 sin 28	M1	$\frac{7}{\cos 62}$
	[14.9, 14.9104]	A1	Allow 15 if correct working for M1 seen

11	$\frac{4}{3}\pi x^3 (=) \frac{2}{3}\pi y^3$	M1	oe eg 1 $\frac{4}{3}\pi \times x^{3} (=) \frac{1}{2} \times \frac{4}{3}\pi \times y^{3}$
			eg 2 $y^3 = 2x^3$
	$\left(\frac{y^3}{x^3}\right) = \frac{\frac{4}{3}\pi}{\frac{2}{3}\pi}$ or $y = \sqrt[3]{2}x$	M1 Dep	oe eg $\frac{y^3}{x^3} = 2$
	$2^{\frac{1}{3}}$	A1	$\sqrt[3]{2}$ scores M2 A0

12	$(t+4)(t^2+4t+4t+16)$	M1	oe Must be correct
	$t^{3} + 4t^{2} + 4t^{2} + 16t + 4t^{2} + 16t + 16t + 16t + 64$	M1	ft From their $(t + 4)(t^2 + 4t + 4t + 16)$ oe Must have at least 4 terms correct M2 $t^3 + 3t^2(4) + 3t(4)^2 + 4^3$ oe
	$t^3 + 12t^2 + 48t + 64$	A1	

13	$\frac{16^2 + 9^2 - 20^2}{2 \times 16 \times 9} \ (= -0.21875)$	M1	oe eg $\frac{256+81-400}{288}$ or $-\frac{63}{288}$ or $-288\cos x = 63$
	$\cos^{-1} \frac{16^2 + 9^2 - 20^2}{2 \times 16 \times 9}$	M1	oe This mark implies the first M1
	[102.6, 102.64]	A1	Allow 103 if correct working for M1 M1 seen

Q	Answer	Mark	Comments Vinscio
14	x coordinate of centre = 2	B1	Comments (13)
	y coordinate of centre = 5	B1	
	$(x - \text{their 2})^2 + (y - \text{their 5})^2$	M1	= 25 not needed for M1
	$(x - \text{their 2})^2 + (y - \text{their 5})^2 = 25$	A1 ft	oe eg Allow 5 ² for 25 ft From their centre of circle Ignore any attempt to expand and simplify

15(a)	$3x^2 - 5$ seen	B1	
	Correct step in attempt to solve their $f(x^2) = 43$ (must be a quadratic equation) $3x^2 = 43 + 5$	M1	oe eg 1 $3x^2 - 5 - 43 = 0$ eg 2 $x^2 = \frac{43+5}{3}$
	$x^2 = 16$	A1	(3)(x+4)(x-4)
	4 and –4	A1 ft	ft From M1 A0 if two solutions found SC2 3.56 and -3.56
15(b)	(gradient for $0 \le x \le 4 =$) $\frac{12}{4}$ or 3	M1	oe
	(gradient for $4 < x \le 8 =$) $\frac{12}{-4}$ or -3	M1	oe Accept – their 3
	y = their $-3x + c$ and substitutes (8,0) or (4,12)	M1	y - 0 = their $-3(x - 8)$ or y - 12 = their $-3(x - 4)$
	3x and $-3x + 24$ or $-3(x - 8)in correct places on answer lines$	A2	A1 $3x$ or $-3x + 24$ or $-3(x - 8)$ in correct place on answer line or $y = 3x$ (for $0 \le x \le 4$) or y = -3x + 24 or $y = -3(x - 8)(for 4 < x \le 8)$

Q	Answer	Mark		Comments
			I	31
6(a)	$1^3 - 21(1) + 20 = 0$ or	B1	Must have = 0	Www.mymathson
	1 - 21 + 20 = 0			
	$4^3 - 21(4) + 20 = 0$ or	B1	Must have = 0	
	64 - 84 + 20 = 0			
16(b)	$1^3 - 10(1)^2 + 29(1) - 20 = 0$ or	B1	Must have = 0	B2 $(x-1)(x-4)(x-5)$
	1 - 10 + 29 - 20 = 0			and correct expansion of one
	Divides $x^3 - 10x^2 + 29x - 20$ by			pair of brackets
	$(x - 1)$ and obtains answer $x^2 - 9x + 20$			eg $(x-1)(x-4)(x-5)$
				and $(x^2 - 5x + 4)(x - 5)$
	$4^3 - 10(4)^2 + 29(4) - 20 = 0$ or	B1	Must have = 0	B1 $(x-1)(x-4)(x-5)$
	64 - 160 + 116 - 20 = 0			BT (x - 1)(x - 4)(x - 5)
	Divides $x^3 - 10x^2 + 29x - 20$ by (x - 4) and obtains answer $x^2 - 6x + 5$			
16(c)	(x + 5) as 3rd factor of numerator	B1	Implied by final a	answer $\frac{x+5}{x+1}$
				ax + b
	(x - 5) as 3rd factor of denominator	B1	Implied by final a	answer $\frac{cx+d}{x-5}$
	their x + 5	B1 ft	Do not award if	further work
	their $x-5$			

17	CE or EB = $2x$ or DF = x or FC = $3x$ or area ABCD = $16x^2$	B1	May be on diagram or implied in working
	Area ABE = $\frac{1}{2} \times \text{their } 2x \times 4x \ (= 4x^2)$ and area CFE = $\frac{1}{2} \times \text{their } 2x \times \text{their } 3x$ (= $3x^2$) and area ADF = $\frac{1}{2} \times \text{their } x \times 4x \ (= 2x^2)$	M2	Attempt at all three triangle areas ABE and CFE and ADFM1 Attempt at any one triangle area ABE or CFE or ADFAll areas must be in terms of <i>x</i>
	$4x \times 4x$ - their $4x^2$ - their $3x^2$ - their $2x^2$ (= $7x^2$) 7	M1 Dep A1	Dep on at least M1 All areas must be in terms of x^2

	AQA Le	evel 2 Certifica	ate in Further Mathematics - 8360/2- Jun Municipality Science $B2$ $a = 3$ or $b = -10$
Q	Answer	Mark	Comments VIIIscio
			44
18	a = 3 and $b = -10$	B3	B2 $a = 3$ or $b = -10$
			B1 $x^2 - 5x - 5x + 25$ oe

19	$(4-x)^2 = 4x + 5$	M1	
	$16 - 4x - 4x + x^2 = 4x + 5$	M1 Dep	Allow one error but must be a quadratic in x
	$x^2 - 12x + 11 (= 0)$	A1	oe Must be 3 terms
	(x-11)(x-1) (= 0)	M1	$\frac{12\pm\sqrt{(-12)^2-4(1)(11)}}{2} \text{or}$
			$(x-6)^2 - 36 + 11 = 0$ oe
	x = 11 and $x = 1$	A1 ft	Must have M3 to ft
			x = 11 and y = -7 or x = 1 and y = 3
	x = 11 and $y = -7$ and	A1	
	x = 1 and $y = 3$		

Alt 19	$y^2 = 4(4 - y) + 5$	M1	
	$y^2 = 16 - 4y + 5$	M1 Dep	Allow one error but must be a quadratic in y
	$y^2 + 4y - 21$ (= 0)	A1	oe Must be 3 terms
	(y+7)(y-3) (= 0)	M1	$\frac{-4\pm\sqrt{4^2-4(1)(-21)}}{2} \text{or} $
			$(y+2)^2 - 4 - 21 = 0$ oe
	y = -7 and $y = 3$	A1 ft	Must have M3 to ft
			x = 11 and y = -7 or
			x = 1 and $y = 3$
	x = 11 and $y = -7$ and	A1	
	x = 1 and $y = 3$		

Q	Answer	Mark	Comments 73%
	2		cs www.mymaths
20	$150 - 6x^2$	B1	
	their $150 - 6x^2 > 0$ or	M1	their 150 – $6x^2$ must be in terms of x
	their $150 - 6x^2 = 0$		Must be > 0 or $= 0$
	$\frac{150}{6} > x^2$ or (6)(5 - x)(5 + x) (> 0)) M1 Dep	ft Their inequality only if a quadratic either simplified to $k > x^2$ or
	or		factorised correctly
	$\frac{150}{6} = x^2$ or $(6)(5-x)(5+x) (= 0)$		or
	6		ft Their equation only if a quadratic either simplified to $k = x^2$ or factorised correctly
	-5 < <i>x</i> < 5	A1	Allow $x > -5$ and $x < 5$ (must have both inequalities as well as the 'and')

21	Fully correct method to eliminate a letter from <i>OB</i> and <i>AB</i> 2(2x) = 11x - 7	M1	oe eg 1 $2y = 11(\frac{y}{2}) - 7$ eg 2 $2y - 4x = 0$ 2y - 11x = -7 and $7x = 7$
	Coordinates of $B = (1, 2)$	A1	Implied by $x = 1$ and $y = 2$
	Fully correct method to eliminate a letter from OA and AB	M1	oe eg 1 $x + 3(\frac{11x-7}{2}) = 0$
	2y = 11(-3y) - 7		eg 2 $2x + 6y = 0$ 33x - 6y = 21 and $35x = 21$
	Coordinates of $A = (0.6, -0.2)$	A1	oe Implied by $x = 0.6$ and $y = -0.2$
	OB^2 = their 1 ² + their 2 ² or AB^2 = (their 1 - their 0.6) ² + (their 2 - their -0.2) ²	M1	oe eg correct attempt at <i>OB</i> or <i>AB</i> ft Their <i>B</i> and/or their <i>A</i>
	$OB = \sqrt{5}$ and $AB = \sqrt{5}$	A1	oe eg $OB^2 = 5$ and $AB^2 = 5$

Q	Answer	Mark	Comments Could Com
			Jud.cs
22	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$	M1	ym
	$\begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix} \text{ or } \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \end{pmatrix} \text{ or }$	A1	oe
	Q (-4, -3)		
	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \text{their} \begin{pmatrix} -4 \\ -3 \end{pmatrix}$	M1 Dep	
	$\begin{pmatrix} -Y \\ -X \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$	A1 ft	oe ft Their $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$ if M2 gained
	(3, 4)	A1 ft	ft Their $\begin{pmatrix} -4 \\ -3 \end{pmatrix}$ if M2 gained
			SC4 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
Alt 1 22	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	M1	This order only
	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	A1	
	Their $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$	M1 Dep	
	$\begin{pmatrix} -y \\ x \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$	A1 ft	oe ft Their $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ if M2 gained
	(3, 4)	A1 ft	ft Their $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ if M2 gained
			SC3 (-3, -4) SC4 $\binom{3}{4}$

Q	Answer	Mark	Comments 73
Alt 2 22	$ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} $	M1	cs www.mymainsc
	$\begin{pmatrix} -y \\ -x \end{pmatrix}$	A1	
	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ their } \begin{pmatrix} -y \\ -x \end{pmatrix}$	M1 Dep	
	$\begin{pmatrix} -y \\ x \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$	A1 ft	oe ft Their $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ if M2 gained
	(3, 4)	A1 ft	ft Their $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ if M2 gained
			SC4 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
Alt 3	Attempt to reflect (-4, 3) in the <i>x</i> -axis	M1	
22	(-4, -3)	A1	
	Attempt to reflect their (-4, -3) in the line $y = -x$	M1 Dep	
	(3, 4)	A2 ft	ft Their (-4, -3) if M2 gained
			SC4 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$

	AQA Le	≥vel 2 Certific	ate in Further Mathematics - 8360/2- Jui Mun Mains Comments
Q	Answer	Mark	Comments Sciou
23	Trials values either side of $x = 0$ $x = -1$ $\frac{dy}{dx} = 9$ and $x = 1$ $\frac{dy}{dx} = -1$	M1	oe Allow statements that $\frac{dy}{dx}$ is positive/negative but any evaluations seen must be correct
	Maximum (0, $\frac{4}{3}$)	A1	Can only be awarded with correct method seen
	Trials values either side of $x = 2$ $x = 1$ $\frac{dy}{dx} = -1$ (may have been seen earlier) $x = 3$ $\frac{dy}{dx} = -3$	M1	oe Allow statements that $\frac{dy}{dx}$ is negative but any evaluations seen must be correct
	(Point of) inflection (2, 0)	A1	Can only be awarded with correct method seen
Alt 23	$\frac{d^2 y}{dx^2} = -3x^2 + 8x - 4 \text{ and}$ substitutes $x = 0$ and $\frac{d^2 y}{dx^2} = -4$	M1	Second derivative must be correct Allow statement that $\frac{d^2y}{dx^2}$ is negative but if evaluation seen it must be correct
	Maximum (0, $\frac{4}{3}$)	A1	Can only be awarded with correct method seen
	Trials values either side of $x = 2$ $x = 1$ $\frac{dy}{dx} = -1$ $x = 3$ $\frac{dy}{dx} = -3$	M1	oe eg uses second and third derivatives Allow statements that $\frac{dy}{dx}$ is negative but any evaluations seen must be correct
	(Point of) inflection (2, 0)	A1	Can only be awarded with correct method seen